





# PRECISION HARDFACING THROUGH LASERCLADDING



# TECHNOGENIA PRESENCE WORLDWIDE



TECHNOGENIA UK
TECHNOGENIA
CARBURE DU CHÉRAN
SPAIN

ALGERIA

TECHNOGENIA
SAUDI ARABIA
TECHNOGENIA
UAE



INDONESI

Technogenia is a specialist in the development and application of anti-wear and anti-corrosion welded coatings for new and used parts across the globe

Technogenia is the inventor of the LaserCarb® laser cladding process











USA - Oklahoma City

# **AGENDA**



- > INTRODUCTION. TYPES OF WEAR
- > AVAILABLE HARDFACING TECHNOLOGIES
- ➤ LASER CLADDING PROCESS
- ➤ LASER CLADDING : TYPES OF COATINGS
- **EXAMPLES**

# **INTRODUCTION. TYPES OF WEAR: DIN 50 320**



#### DIN 50 320 - Wear Classification

Adhesive Wear (Material transfers between surfaces) Abrasive Wear (Hard particles scratch and remove material)

Surface Fatigue Wear (Stress cycles cause cracks and failure)



DIN 50 320 industrial concepts of reliability, failure, and maintenance classifies <u>wear as the progressive loss of material</u> from a solid surface due to mechanical causes from contact and relative motion with a counter-body, and identifies three main wear mechanisms: adhesive wear, abrasive wear, and surface fatigue wear

# **AVAILABLE TECHNOLOGIES TO RESTORE/ HARDFACE**





#### PTA

#### Pros

- Strong Metallurgical bond
- Thick build up possible
- X Cons
- High dilution / Large HAZ
- Surface finish

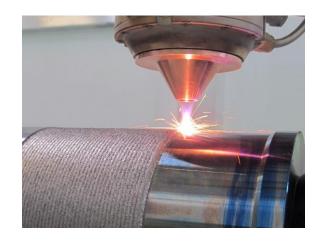


#### MIG

#### Pros

- Strong Metallurgical bond
- Thick build up possible
- Cost




- High dilution / Large HAZ
- Surface finish



#### Thermal Spray (HVOF/ Arc Spray ...)

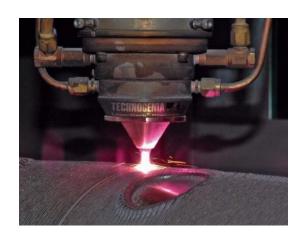
#### Pros

- Surface finish
- Low dilution
- Dense coating
- X Cons
- Weak bonding
- Thick build up are not possible



#### **Laser Cladding**

#### Pros


- Strong Metallurgical bond
- Low dilution
- Thick build up possible
- Low heat input



Surface finish

# **LASER CLADDING PROCESS - ADVANTAGES**





Thanks to low temperature combined with a small heat affected zone during the lasercladding process there is no delamination and almost no distortion while a true metallurgical weld is achieved.

|                        | <b>Laser Cladding</b> | PTA Welding | TIG Welding    | MIG Welding    |
|------------------------|-----------------------|-------------|----------------|----------------|
| Temperature            | 842–1112°F            | 30k-50k°F   | 11,000°F       | 3,000°F        |
| Coating<br>Thickness   | 0.01"-0.15"           | 0.05"-0.1"  | 0.002"-0.05"   | 0.002"-0.05"   |
| Metallurgical<br>Bond  | Yes                   | Yes         | Yes            | Yes            |
| <b>Metal Dilution</b>  | Low                   | Moderate    | Moderate-High  | High           |
| Heat Affected<br>Zone  | Low (~0.03")          | Low-Medium  | Large (~0.06") | Large (~0.06") |
| Cobalt-Based<br>Alloys | <b>✓</b>              | <b>~</b>    | <b>✓</b>       | -              |
| Nickel-Based<br>Alloys | <b>✓</b>              | <b>~</b>    | <b>✓</b>       | -              |
| Tungsten<br>Carbide    | <b>✓</b>              | <b>~</b>    | <b>✓</b>       | -              |
| Stainless<br>Steels    | <b>✓</b>              | <b>✓</b>    | <b>✓</b>       | <b>~</b>       |



## **LASER CLADDING PROCESS - DEFINITION**

## Formal / Standards-Based Definitions

## •DIN EN ISO 4063 (Process no. 43 – Cladding by laser beam):

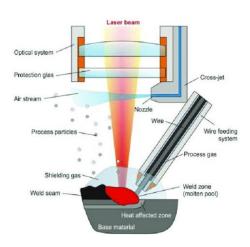
"A process in which material is deposited onto a substrate by means of a laser beam to form a metallurgically bonded layer with properties different from the substrate."

## •AWS (American Welding Society, C7.21):

"Laser cladding is a thermal surface modification process where a laser beam is used to melt a thin layer of the substrate surface and simultaneously fuse an externally supplied material, creating a metallurgically bonded coating."

### **Technical Literature Definitions**

# •Toyserkani, Khajepour, & Corbin (2005) – *Laser Cladding*:


"Laser cladding is an additive manufacturing technique in which a laser beam creates a melt pool on a substrate while metallic powder or wire is delivered, producing coatings with minimal dilution and low heat input."

## •Steen & Mazumder – *Laser Material Processing* (4th ed., 2010):

"Laser cladding is the deposition of a layer, often a corrosion- or wear-resistant alloy, on the surface of a component by melting a thin substrate layer together with injected material, ensuring strong metallurgical bonding."

# LASER CLADDING PROCESS - WIRE FED VS POWDER FED

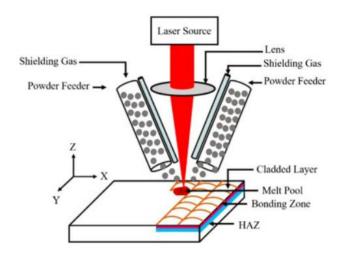




#### **Wire Laser Cladding**

#### Pros:

High material efficiency — nearly 100% utilization.


Lower cost — wire is cheaper than powder.

Easy & safe handling — minimal contamination or health risks.

Cost-effective — ideal for small or custom parts.

#### X Cons:

Limited for complex shapes.
Less alloy flexibility.
Higher porosity / wider HAZ possible.
Process-sensitive — requires precise setup.



#### **Powder Laser Cladding**

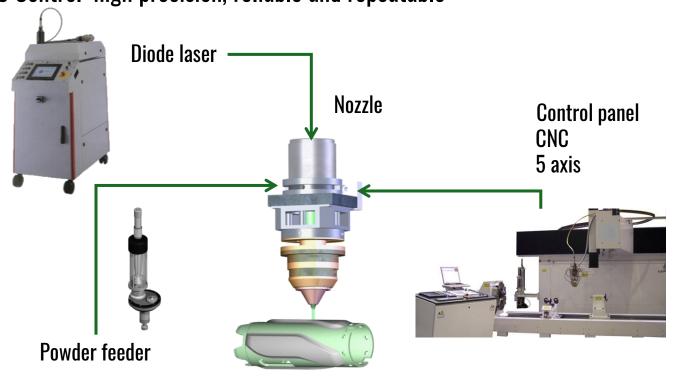
#### Pros:

High deposition rates for thick coatings.

Allows complex alloy mixes and fine microstructures.

Wide material range — metals, alloys, ceramics, composites.

Excellent control of thickness, finish, and dilution.


#### X Cons:

Lower material efficiency — powder waste. Higher powder cost. Safety risks (dust, inhalation). Possible machine contamination.



TECHNICA® GENIA® USA - Oklahoma City

High quality process for difficult and strategic parts CNC Control: high precision, reliable and repeatable



## Principle:

The process consists of using the energy of a Laser beam to melt the deposition powder (Ni-Cr or other material) on the part.

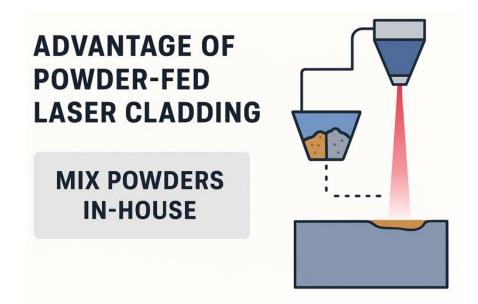
A weld occurs between the deposit and the base metal.













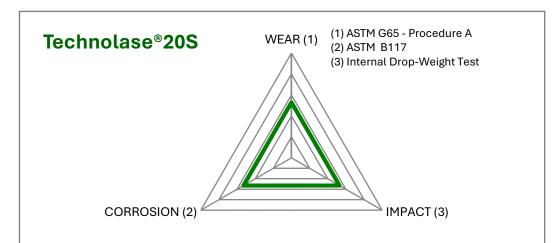

| Parameter                                        | Unit / Typical Range       | Function / Effect                                                                                                           | Too Low                                          | Too High                                                |
|--------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| aser Power (P)                                   | Watts (300–6000 W typical) | Provides energy to melt the substrate surface and feed material; controls melt pool size, dilution, and bonding.            | Incomplete melting, weak bonding, poor adhesion. | Excessive melting, high dilution, substrate distortion. |
| aser Spot Size / Beam Diameter                   | mm (0.5–5 mm typical)      | Determines power density (W/mm²) — smaller spot = higher energy density. Affects melt pool depth, bead width, and dilution. | Narrow track, poor overlap, incomplete fusion.   | Too wide pool, high dilution, carbide dissolution.      |
| Scanning Speed (Traverse Speed)                  | mm/s                       | Governs exposure time of laser on surface; affects energy input per unit length and cooling rate.                           | High heat input, deep dilution, rough surface.   | Poor fusion, lack of bonding, discontinuous track.      |
| Powder Feed Rate                                 | g/min or g/s               | Controls amount of powder entering the melt pool; affects layer thickness and dilution.                                     | Discontinuous coating, thin layer.               | Excess powder, unmelted particles, surface roughness.   |
| Shielding Gas Flow Rate                          | L/min                      | Protects melt pool from oxidation and assists powder flow; typically argon or helium.                                       | Oxidation, porous coatings.                      | Turbulence in melt pool, powder deflection.             |
| Standoff Distance (Nozzle–Substrate<br>Distance) | mm (10–20 mm typical)      | Influences powder focus and deposition efficiency; affects melt pool geometry and bonding quality.                          | Powder not well focused, low efficiency.         | Powder scattered, poor adhesion.                        |
| Overlap Ratio / Track Spacing                    | % (30–50% typical)         | Defines coverage and surface uniformity when building multiple tracks.                                                      | Gaps between tracks.                             | Overheating, high dilution, surface waviness.           |
| Substrate Preheating Temperature                 | °C (often 100–300°C)       | Reduces thermal gradients, residual stress, and cracking, especially on hardenable steels.                                  | Thermal stress, cracking risk.                   | Excessive dilution, slower solidification.              |

# **LASER CLADDING PROCESS: TYPES OF COATINGS**



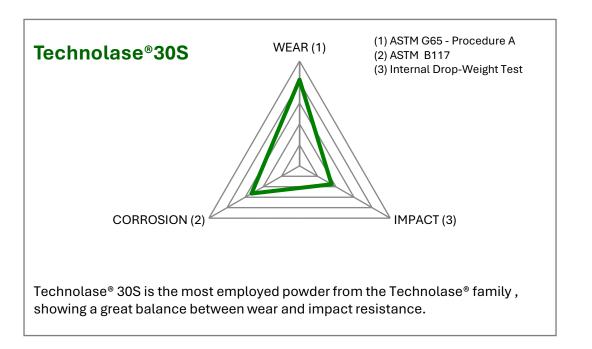


## **Types of coatings**


- Stainless steel
- Stellite 1 / 6 / 12 / 21
- Aluminum Bronze
- Technolase®
- Inconel
- Ultimet
- Ti-6AI-4V
- Hastelloy






Technolase® is a composite powder containing spherical cast tungsten carbide (Spherotene®) + nickel/cobalt/iron base matrix.

Technogenia uses in house mixed powder for laser cladding applications where wear, abrasion & corrosion resistance properties can be adjusted based on the nature of wear and customer requirements



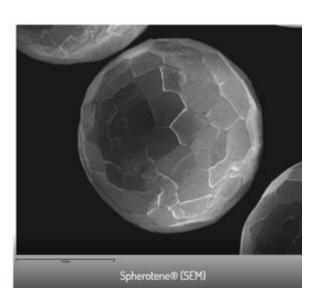
Technolase® 20S is the top choice for crack-free overlays.

The hard phase provided by Spherotene® (spherical cast tungsten carbides) combined with a nickel-based matrix translates to high abrasion resistance with fair impact resistant properties.



# **SPHEROTENE**®

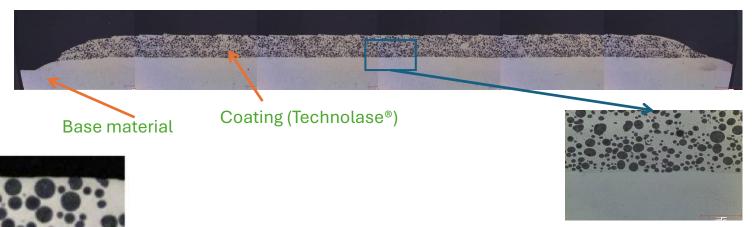



Spherotene® cast tungsten carbide spheres have hardness up to 3500 HV (Hardness Vickers) due to its very fine metallurgical structure known as "tangled needles".

Due to the spherical shape of the tungsten carbide grains, the welding overlay has a much-improved impact resistance and wear resistance than crushed tungsten carbide.

Manufactured since 1986 by Technogenia, using a unique, innovative and patented process known as "cold crucible" Spherotene® is obtained by spraying a liquid phase of tungsten carbide.










# LASER CLADDING PROCESS: LASERCARB®: TECHNOLASE®

Cross section: 5mm thick deposit over stainless steel



Tungsten Carbide particle

## **Metallurgical aspect and advantages:**

- Heat input control (through the accuracy of the laser)
  Low dilution with the base material (< 1%)
  True metallurgical bonding
  Fine metalurgical structure due to high solidification rate
  High density deposit .025-.065 (no porosity)
  Limited distorsion

- Precision and reliability of the process
  Possibility to apply several layers of material
  Possibility to remanufacture

# **ASTM G65 ABRASION TEST RESULTS COMPARISON**

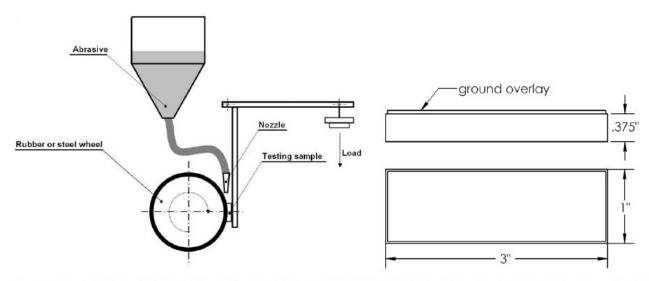



Figure 1: Schematic diagram of ASTM G65 test apparatus (left) and standard test coupon dimensions (right)



#### WEAR RESISTANCE MATRIX (Abrasion Resistance)

| Standard          |                                                                                       |                  |                             |  |
|-------------------|---------------------------------------------------------------------------------------|------------------|-----------------------------|--|
| Designation       | ASTM G65                                                                              |                  |                             |  |
| Title             | Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus |                  |                             |  |
| Procedure         | Α                                                                                     |                  |                             |  |
|                   |                                                                                       |                  |                             |  |
| Coupons           |                                                                                       |                  |                             |  |
| Base Material Des | ignation                                                                              |                  | 1018                        |  |
| Dasc material Des |                                                                                       |                  |                             |  |
| Base Material     | length width                                                                          | mm(in)           | 76 x 25 (3 x 1)             |  |
|                   | length width<br>thickness                                                             | mm(in)<br>mm(in) | 76 x 25 (3 x 1)<br>10 (0.4) |  |
| Base Material     | thickness                                                                             |                  |                             |  |

| Test Parameters (Procedure A) |                |               |
|-------------------------------|----------------|---------------|
| Test load                     | N(lbf)         | 130 (30)      |
| Sand Flow                     | g/min (lb/min) | 342 (0.75)    |
| Wheel Revolutions (Test time) |                | 6000 (30 min) |
| Wheel Hardness                |                | 60 Shore A    |

| Results  |           |               |                                             |              |                      |
|----------|-----------|---------------|---------------------------------------------|--------------|----------------------|
| Products | Reports   | Mass Loss (g) | Volume Loss <sup>1</sup> (mm <sup>3</sup> ) | Maximum Wear | Scar Depth (in) (mm) |
| 20S      | WTR.20S   | 0.2500        | 20.1                                        | 0.0010       | 0.0254               |
| 30S      | WTR.30S   | 0.1205        | 10.6                                        | 0.0010       | 0.0254               |
| 40S      | WTR.40S   | 0.1891        | 16.2                                        | 0.0050       | 0.1270               |
| 50S      | WTR.50S   | 0.1027        | 10.0                                        | 0.0010       | 0.0254               |
| 80S      | WTR.80S   | 0.1189        | 11.1                                        | 0.0010       | 0.0254               |
| 60S      | WTR.60S   | 0.0877        | 7.8                                         | 0.0005       | 0.0127               |
| TP245    | WTR.TP245 | 1.8210        | 204.6                                       | 0.032        | 0.8128               |
| TP255    | WTR.TP255 | 2.1930        | 252.1                                       | 0.0424       | 1.0770               |
| TP265    | WTR.TP265 | 1.9191        | 210.9                                       | 0.0369       | 0.9373               |
| TP275    | WTR.TP275 | 2.9353        | 341.3                                       | 0.0455       | 1.1557               |
| TP625    | WTR.TP675 | 2.1499        | 247.1                                       | 0.0365       | 0.9271               |
| TP276    | WTR.TP276 | 2.6867        | 316.1                                       | 0.0450       | 1.1430               |
| TP316    | WTR.TP316 | 2.2850        | 282.1                                       | 0.0434       | 1.1024               |
| TP420    | WTR.TP420 | 1.8075        | 198.6                                       | 0.0335       | 0.8509               |
| R706     | WTR.R706  | 0.0839        | 12.2                                        | 0.0020       | 0.0508               |
| R401     | WTR.R401  | 1.8066        | 248.5                                       | 0.0362       | 0.9195               |
| LV8      | WTR.LV8   | 0.2167        | 19.1                                        | 0.0005       | 0.0127               |

<sup>&</sup>lt;sup>1</sup> Densities used for the calculation of the volume loss come from internal data (see Density Matrix)

Page 47 of 301



# **LASER CLADDING PROCESS: FLEXIBILITY**

## **Types of coatings**

- Stainless steel
- Stellite 1 / 6 / 12 / 21
- Aluminum Bronze
- Technolase®
- Inconel
- Ultimet
- Ti-6AI-4V
- Hastelloy

### **Base Material**

- Carbon Steel
- Stainless Steel
- Non magnetic Stainless Steel
- Duplex, Super Duplex

## Design

- External surfaces (OD)
- Complex geometry Internal areas (ID)

# LASER CLADDING PROCESS: EXAMPLES



















# TEGULA GENIA USA - Oklahoma Gity

## Study:

 Evaluation of Inconel 625 laser cladding on heat exchanger tube.

#### **Conditions**:

- Tests were done on OD 2" x ID 1.75" tube, P265GH steel due to availability.
- The tube was wire brushed before cladding
- Feeding material Inconel 625 powder

#### **Visual examination:**

- Smooth surface
- Cladding thickness :

Min:.070" Max:.080"

- No cracks
- No deviation of the tube



# RESULTS Liquid penetrant test: •No defects

## Dye penetrant test

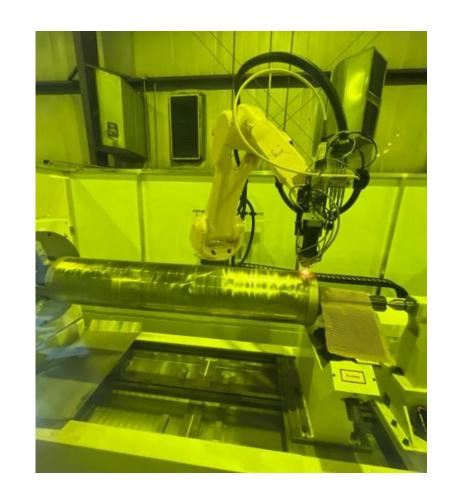













# **LASER CLADDING PROCESS: STEEL - TRANSPORTATION ROLLS**





**Pre Grinding** 



**After Laser Cladding** 

**Laser Cladding with CNC Controlled Robot Laser** 

# TEGHNA GENIA

# LASER CLADDING PROCESS: STEEL - LOOPER ROLLS - REPAIR



**Laser Cladded Rolls (as welded)** 



**After Final Machining** 

# TECHNOGENIA®

# LASER CLADDING PROCESS: STEEL - EXIT CASTER ROLL - REPAIR

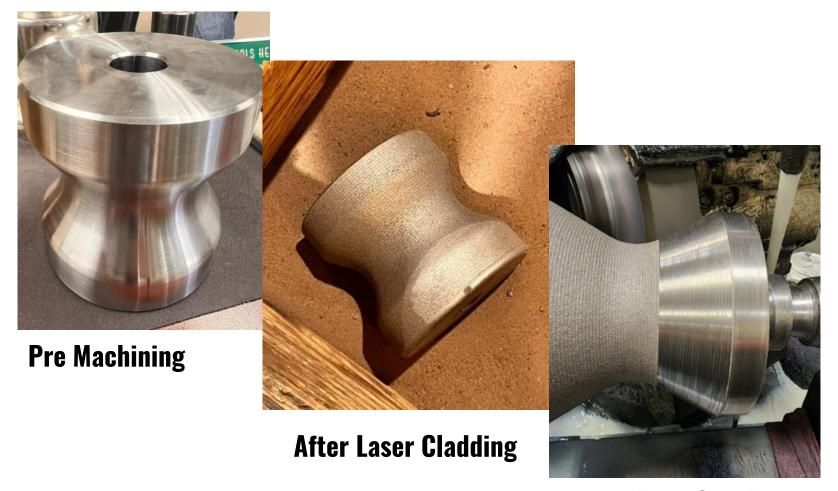


**Worn Roll** 



**Removing Worn Material** 




**After Laser Cladding** 



**Finished Part** 

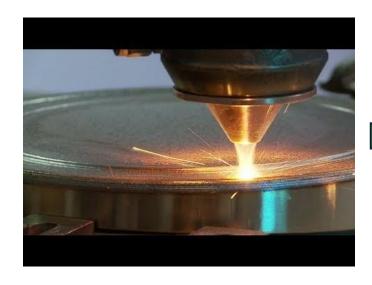


# LASER CLADDING PROCESS: STEEL - GUIDE ROLLS - TURNKEY

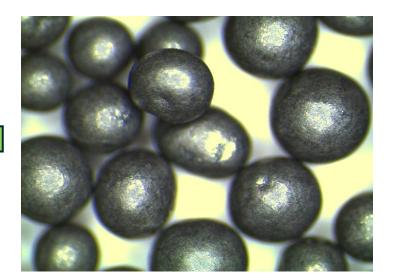


**Final Grind** 

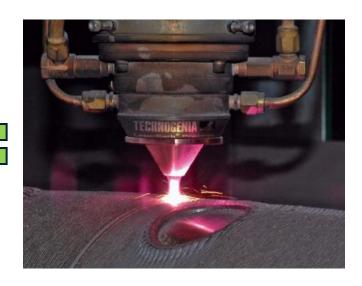



**Finished Part** 

# **TECHNOGENIA'S DIFFERENTIATOR**




Success in antiabrasion solutions is defined by hardfacing technology + hardfacing material


## LASER CLADDING



## **CORRECTLY CHOSEN POWDER**



# LONG LASTING EQUIPMENT



### **LASERCLADDING CAPABILITIES: USA – OKLAHOMA CITY**



TECHNOGENIA LASERCARB OKLAHOMA INC. 41 S. Cooley Drive OKC OK 73127

### 23 full time employees, 2 shifts -

- 6 Laser cladding machines, **CNC programmable**, with a 30ft long parts capacity, up to **10 tons**.
- External and internal laser cladding

Maximum OD: 36" Minimum ID 1 ½", 20" deep maximum

- Outside grinding, inside and surface grinding

Maximum OD Grinding: 10"
Minimum ID Grinding 1 ½"
Maximum ID Grinding: 8"
Maximum surface grinding: about 30" long

- **Shot peening**Using stainless cut wire 0.080" beads, OD only
- Laser heat treatments



## **LASERCLADDING CAPABILITIES: USA - HOUSTON TX**



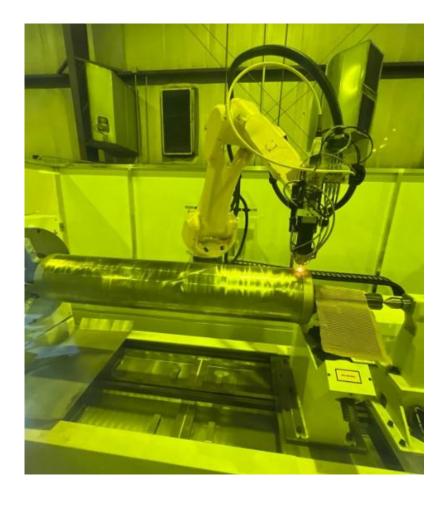
TECHNOGENIA INC. 708 old Montgomery Rd. Conroe, TX 77301

25 full time employees, 2 shifts -

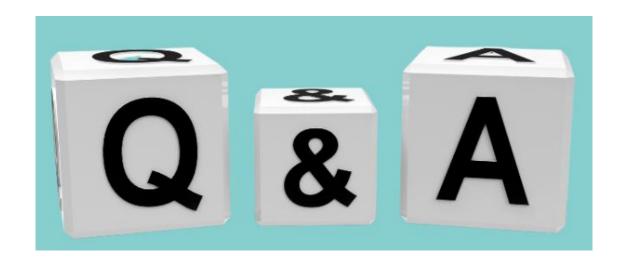
- 7 Laser cladding machines, **CNC programmable**, with a 30ft long parts capacity, up to **10 tons**.
- External and internal laser cladding Maximum OD: 36" Minimum ID 1 ½", 20" deep maximum
- Outside grinding, inside and surface grinding
  Maximum OD Grinding: 26"
  Minimum ID Grinding 1 ½"
  Maximum ID Grinding: 8"
  Maximum surface grinding: about 36" long
- Laser heat treatments
- -Machining equipment Lathe, 30ft long x 10" OD










## LASER CLADDING PROCESS: ROBOTIC LASER

- Ultimate flexibility coats complex shapes & hard-to-reach areas.
- Consistent quality precise control ensures uniform, defectfree coatings.
- Minimal heat distortion reduced heat-affected zone improves part integrity.
- Higher efficiency faster, automated, and repeatable process.
- Versatile handles small batches or large parts without retooling.







## **CONTACT INFO**

Technogenia Lasercarb Oklahoma, Inc.

Phone: +1 405 470 3350

**Email:** <u>natalia.fulton@technogenia.com</u>

Address: 41 S. Cooley Dr Oklahoma City, OK 73127

https://www.technogeniausa.com/



# LASER CLADDING PROCESS USING TECHNOLASE®- COMPARISON



Chromium Carbide case study for a classifier mill grinding blocks



## Original hardfacing:

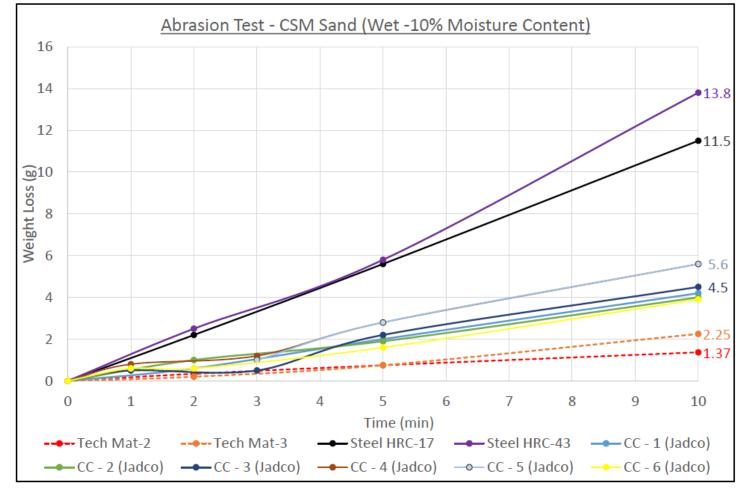
- EUTECTIC product EUTROLOY 16496 EN1274 (Alloy 60).
- Hardness 59-60HRC
- Layer thickness 6 mm
- Duration 1-2 weeks

# **Proposed hardfacing:**

- Technolase® 30S tungsten carbide with Nickel base matrix
- Hardness: Hard particles: 3500 Vickers, matrix 40 HRC
- Layer thickness 3 mm
- Duration 6 8 weeks

Conclusion: thinner layer of laser applied tungsten carbide hardfacing lasts at least two times longer than chrome carbide

# LASER CLADDING PROCESS USING DIFFERENT MATERIALS - COMPARISON




Chrome Carbide(CC) is commonly used in different industries as antiabrasion coating.

The graph represents comparison of weight loss of Technogenia hardfacing (Tech Mat - 2 & Tech Mat - 3) tested in wet sand next to uncoated (Steel HRC – 17 & Steel HRC – 43) and common CC coatings (CC -1, CC-2, CC – 3, CC – 4, CC - 5).

Technogenia's Material 2 (Technolase®) outperformed Chrome Carbide material by at least 3 times.





Note: Comparison is done with the published data of Kennametal products.



